Air quality monitoring system of the country. (n.d.). Air Quality Monitoring System. Retrieved from
https://aqms.doe.ir/ (in persian)
Antoniou, N., Montazeri, H., Wigo, H., Neophytou, M. K.-A., Blocken, B., & Sandberg, M. (2017). CFD and wind-tunnel analysis of outdoor ventilation in a real compact heterogeneous urban area: Evaluation using “air delay.” Building and Environment, 126, 355–372. DOI:
10.1016/j.buildenv.2017.10.013
Azizi, M. M., & Javanmardi, K. (2017). The effects of urban block forms on the patterns of wind and natural ventilation. Procedia Engineering, 180, 541–549. DOI:
10.1016/j.proeng.2017.04.213
Bahraini, S. H., Baloki, B., & Taqban, S. (2012). Analysis of the theoretical foundations of contemporary urban design: First volume: Late 19th century to the seventh decade of the 20th century. (2nd ed.). Tehran: University of Tehran Press. (in persian) DOI:
10.52547/ciauj.8.2.535
Barman, A., Roy, M., & Dasgupta, A. (2021). Climatic envelope as an urban planning tool to configure urban fabric of Guwahati city to support daylight and natural ventilation. International Journal of Engineering and Advanced Technology, 10, 239–248. DOI:
10.35940/ijeat.C2208.0210321
Baş, H., Andrianne, T., & Reiter, S. (2024). City configurations to optimize pedestrian-level ventilation and wind comfort. Sustainable Cities and Society, 114, Article 105745. DOI:
10.1016/j.scs.2024.105745
Bing, D., Zhaoyin, Y., Wupeng, D., Xiaoyi, F., Yonghong, L., Chen, C., & Liu, Y. (2021). Improving building thermal energy efficiency through integrated planning. In IOP Conference Series: Earth and Environmental Science, 657, Article 012009. DOI:
10.1088/1755-1315/657/1/012009
Blocken, B. (2014). 50 years of computational wind engineering: Past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 129, 69–102. DOI:
10.1016/j.jweia.2014.03.008
Blocken, B., Stathopoulos, T., & Van Beeck, J. (2016). Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment. Building and Environment, 100, 50–81. DOI:
10.1016/j.buildenv.2016.02.004
Bourbia, F., & Boucheriba, F. (2010). Impact of street design on urban microclimate for semi-arid climate (Constantine). Renewable Energy, 35(2), 343–347. DOI:
10.1016/j.renene.2009.07.017
Buccolieri, R., Sandberg, M., & Di Sabatino, S. (2010). City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmospheric Environment, 44(15), 1894–1903. DOI:
10.1016/j.atmosenv.2010.02.022
Chapman, S., Watson, J. E. M., Salazar, A., et al. (2017). The impact of urbanization and climate change on urban temperatures: A systematic review. Landscape Ecology, 32, 1921–1935. DOI:
10.1007/s10980-017-0561-4
Chen, G., Yang, X., Yang, H., Hang, J., Lin, Y., Wang, X. (2020). The influence of aspect ratios and solar heating on flow and ventilation in 2D street canyons by scaled outdoor experiments. Building and Environment, 185, Article 107159. DOI:
10.1016/j.buildenv.2020.107159
Chen, L., Hang, J., Sandberg, M., Claesson, L., Di Sabatino, S., & Wigo, H. (2017). The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models. Building and Environment, 118, 344–361. DOI:
10.1016/j.buildenv.2017.03.042
Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., He, Z., et al. (2012). Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. International Journal of Climatology, 32(1), 121–136. DOI:
10.1002/joc.2243
Delmastro, C., & Gargiulo, M. (2020). Capturing the long-term interdependencies between building thermal energy supply and demand in urban planning strategies. Applied Energy, 268, Article 114774. DOI:
10.1016/j.apenergy.2020.114774
Detailed plan of Shiraz city. (2013). Ministry of Roads and Urban Development, General Department of Roads and Urban Development of Fars Province. (in persian)
He, B. J., Zhao, Z. Q., Shen, L. D., Wang, H. B., & Li, L. G. (2019). An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on Landsat 8 image. Sustainable Cities and Society, 44, 416–427. DOI:
10.1016/j.scs.2018.10.049
Hetyei, C., & Szlivka, F. (2021). Counter-rotating dual rotor wind turbine layout optimisation. Acta Polytechnica, 61, 342–349. DOI:
10.14311/AP.2021.61.0342
Hou, L., Yue, W., & Liu, X. (2021). Spatiotemporal patterns and drivers of summer heat island in Beijing-Tianjin-Hebei urban agglomeration, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14(99), 7516–7527. URL:
https://www.spacesyntax.online/software-and-manuals/depthmap/
Hu, T., & Yoshie, R. (2013). Indices to evaluate ventilation efficiency in newly-built urban areas at pedestrian level. Journal of Wind Engineering and Industrial Aerodynamics, 112, 39–51. DOI:
10.1016/j.jweia.2012.11.002
Ji, H. M., Peng, Y. L., & Ding, W. W. (2019). A quantitative study of geometric characteristics of urban space based on the correlation with microclimate. Sustainability, 11(18), Article 4951. DOI:
10.3390/su11184951
Jing, R., Wang, M., Zhang, Z., Wang, X., Li, N., Shah, N., & Zhao, Y. (2019). Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties. Applied Energy, 252, Article 113424. DOI:
10.1016/j.apenergy.2019.113424
Krüger, E. L., Minella, F. O., & Rasia, F. (2011). Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment, 46(3), 621–634. DOI:
10.1016/j.buildenv.2010.09.006
Lee, J. A., Jung, D. Y., Chon, J. H., Lee, S. M., & Song, Y. B. (2010). An evaluation of human thermal comfort and improvement of thermal environment by spatial structure. Journal of the Korean Institute of Landscape Architecture, 38(5), 12–20. URL:
https://www.semanticscholar.org/paper/An-Evaluation-of-Human-Thermal-Comfort-and-of-by-Junga-Chon/667adfc2d5e042a7c0e4e0e08ddf3c0eea7e2a84
Li, J., Peng, Y. L., Ji, H. M., Hu, Y., & Ding, W. W. (2019). A wind tunnel study on the correlation between urban space quantification and pedestrian-level ventilation. Atmosphere, 10(10), Article 564. DOI:
10.3390/atmos10100564
Li, Y. G., Liu, P., Li, Y., Yan, J. H., & Quan, J. (2023). Wind load characteristics of irregular-shaped high-rise buildings. Advances in Structural Engineering, 26(1), 3–16. DOI:
10.1177/13694332221120700
Liu, Y. H., Xu, Y. M., Zhang, F. M., & Shu, W. J. (2020). A preliminary study on the influence of Beijing urban spatial morphology on near-surface wind speed. Urban Climate, 34, Article 100703. DOI:
10.1016/j.uclim.2020.100703
Macabutas, E., Tongco, A., & Taylor, G. (2020). Air temperature analysis of a residential house using SolidWorks Flow Simulation. Civil Engineering and Architecture, 8, 792–800. DOI:
10.13189/cea.2020.080506
Morris, J. (2012). The history of the shape of the city to the industrial revolution. (12th ed.). Tehran: Iran University of Science and Technology Publications.
Ng, E. (2009). Policies and technical guidelines for urban planning of high-density cities: Air ventilation assessment (AVA) of Hong Kong. Building and Environment, 44(7), 1478–1488. DOI:
10.1016/j.buildenv.2008.06.013
Ng, E., Yuan, C., Chen, L., Ren, C., & Fung, J. C. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban Planning, 101, 59–74. DOI:
10.1016/j.landurbplan.2011.01.004
Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 127–138. DOI:
10.1016/j.landurbplan.2014.10.018
Ostrovsky, V. (2015). Contemporary urbanization: From the first sources to its charter. (6th ed.). Tehran: University Publishing Center Publications.
Pakzad, J. (2017). History of the city and urbanization in Europe from the beginning to the industrial revolution. (6th ed.). Tehran: Armanshahr Publications. (in persian)
Panagiotou, I., Neophytou, M. K. A., Hamlyn, D., & Britter, R. E. (2013). City breathability as quantified by the exchange velocity and its spatial variation in real inhomogeneous urban geometries: An example from central London urban area. Science of the Total Environment, 442, 466–477. DOI:
10.1016/j.scitotenv.2012.09.001
Peng, J., Qiao, R., Liu, Y., Blaschke, T., Li, S., Wu, J., Xu, Z., & Liu, Q. (2020). A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales. Remote Sensing of Environment, 246, Article 111866. DOI:
10.1016/j.rse.2020.111866
Perini, K., & Ottelé, M. (2014). Designing green façades and living wall systems for sustainable constructions. International Journal of Design & Nature and Ecodynamics, 9(1), 31–46. DOI:10.2495/DNE-V9-N1-31-46
Razak, A. A., Hagishima, A., Ikegaya, N., & Tanimoto, J. (2013). Analysis of airflow over building arrays for assessment of urban wind environment. Building and Environment, 59, 56–65. DOI:
10.1016/j.buildenv.2012.08.007
Santamouris, M. (2014). Cooling the cities: A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703. DOI:
10.1016/j.solener.2012.07.003
Serteser, N., & Karadag, I. (2018). Design for improving pedestrian wind comfort: A case study on a courtyard around a tall building. Architectural Science Review, 61(6), 492–499. DOI:
10.1080/00038628.2018.1492899
Shan, Y., Guan, D., Hubacek, K., Zheng, B., Davis, S. J., Jia, L., Liu, J., Liu, Z., Fromer, N., Mi, Z., Meng, J., Deng, X., Li, Y., Lin, J., Schroeder, H., Weisz, H., & Schellnhuber, H. J. (2018). City-level climate change mitigation in China. Science Advances, 4(6), eaaq390.
https://pure.iiasa.ac.at/id/eprint/15360/1/eaaq0390.full.pdf
Sharples, S., & Bensalem, R. J. S. (2001). Airflow in courtyard and atrium buildings in the urban environment: A wind tunnel study. Solar Energy, 70(3), 237–244. DOI:
10.1016/S0038-092X(00)00092-X
Shatrian, R. (2014). Climate and architecture of Iran. (5th ed.). Tehran: Simai Danesh Publications. (in Persian)
Tominaga, Y., & Shirzadi, M. (2021). Wind tunnel measurement of three-dimensional turbulent flow structures around a building group: Impact of high-rise buildings on pedestrian wind environment. DOI:
10.1016/j.buildenv.2021.108389
Toparlar, Y., Blocken, B., Vos, P. V., Van Heijst, G. J. F., Janssen, W. D., van Hooff, T., & Timmermans, H. J. P. (2015). CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Building and Environment, 83, 79–90. DOI:
10.1016/j.buildenv.2014.08.004
Van Druenen, T., van Hooff, T., Montazeri, H., & Blocken, B. (2019). CFD evaluation of building geometry modifications to reduce pedestrian-level wind speed. Building and Environment, 163, Article 106293. DOI:
10.1016/j.buildenv.2019.106293
Voordeckers, D., Lauriks, T., Denys, S., Billen, P., Tytgat, T., & van Acker, M. (2021). Guidelines for passive control of traffic-related air pollution in street canyons: An overview for urban planning. Landscape and Urban Planning, 207, Article 103980. DOI:
10.1016/j.landurbplan.2020.103980
Wang, Y., Guo, Z., & Han, J. (2021). The relationship between urban heat island and air pollutants and them with influencing factors in the Yangtze River Delta, China. Ecological Indicators, 129, Article 107976. DOI:
10.1016/j.ecolind.2021.107976
Xiang, S., Zhou, J., Fu, X., Zheng, L., Wang, Y., Zhang, Y., Yi, K., Liu, J., Ma, J., & Tao, S. (2021). Fast simulation of high-resolution urban wind fields at city scale. Urban Climate, 39, Article 100941. DOI:
10.1016/j.uclim.2021.100941
Xie, P., Yang, J., Wang, H., Fang, L., & Liu, Y. (2020). A new method of simulating urban ventilation corridors using circuit theory. Sustainable Cities and Society, 61, Article 102162. DOI:
10.1016/j.scs.2020.102162
Yang, F., Qian, F., & Lau, S. (2013). Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Building and Environment, 70(1), 122–137. DOI:
10.1016/j.buildenv.2013.08.019
Yang, H., Chen, G., Wang, D., Hang, J., Li, Q., Wang, Q. (2021). Influences of street aspect ratios and realistic solar heating on convective heat transfer and ventilation in full-scale 2D street canyons. Building and Environment, 204, Article 108125. DOI:
10.1016/j.buildenv.2021.108125
Yang, J., Ren, J., Sun, D., Xiao, X., & Li, X. (2021). Understanding land surface temperature impact factors based on local climate zones. Sustainable Cities and Society. DOI:
10.1016/j.scs.2021.102818
Yang, J., Wang, Y., Xue, B., Li, Y., Xiao, X., Xia, J. C., & He, B. (2021). Contribution of urban ventilation to the thermal environment and urban energy demand: Different climate background perspectives. Science of the Total Environment, 795, Article 148791.
Yang, J., Zhan, Y. X., Xiao, X. M., Xia, J. H., Sun, W., & Li, X. M. (2020). Investigating the diversity of land surface temperature characteristics in different scale cities based on local climate zones. Urban Climate, 34, Article 100700. DOI:
10.1016/j.uclim.2020.100700
Yang, X., Zhang, Y., Hang, J., Lin, Y., Mattsson, M., Sandberg, M., ... (2020). Integrated assessment of indoor and outdoor ventilation in street canyons with naturally ventilated buildings by various ventilation indexes. Building and Environment, 169, Article 106528. DOI:
10.1016/j.buildenv.2019.106528
You, W., & Ding, W. (2021). Effects of urban square entry layouts on spatial ventilation under different surrounding building conditions. Building Simulation, 14(2), 377–390. DOI:
10.1007/s12273-020-0656-8
You, W., & Ding, W. W. (2017). Improving the residential wind environment by understanding the relationship between outdoor space form and ventilation potential. Proceedings of the 26th UIA 2017 Seoul World Architects Congress, Seoul, Korea. DOI:
10.3390/atmos8060102
You, W., Gao, Z., Chen, Z., & Ding, W. W. (2017). Improving residential wind environments by understanding the relationship between building arrangements and outdoor regional ventilation. Atmosphere, 8(6), Article 102. DOI:
10.3390/atmos8060102
Yuan, C., & Ng, E. (2014). Practical application of CFD on environmentally sensitive architectural design at high-density cities: A case study in Hong Kong. Urban Climate, 8, 57–77. DOI:
10.1016/j.uclim.2013.12.001
Yuan, C., Ren, C., & Ng, E. (2014). GIS-based surface roughness evaluation in the urban planning system to improve the wind environment: A study in Wuhan, China. Urban Climate, 10, 585–593. DOI:
10.1016/j.uclim.2014.06.005
Yu-Hsuan, J., Chih-Yung, W., Zhengtong, L., & An-Shik, Y. (2021). Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays. Applied Energy, 299, Article 117304. DOI:
10.1016/j.apenergy.2021.117304
Zhang, J., Wan, Y., Tian, M., Li, H., Chen, K., Xu, X., & Yuan, L. (2024). Comparing multiple machine learning models to investigate the relationship between urban morphology and PM2.5 based on mobile monitoring. Building and Environment, 248, Article 111032. DOI:
10.1016/j.buildenv.2023.111032
Zongci, Z., Yong, L., Ying, J., et al. (2016). Possible reasons for wind speed reduction in China in the past 50 years. Advances in Meteorological Science and Technology, (3), 106–109. DOI:
10.1007/s13351-021-0143-x