Abdolhay, A. (2018). Developing a conflict resolution model for water allocation in urban areas
considering the concept of reinforcement learning. M.Sc. Thesis (In Persian). University of Tehran,
Tehran, Iran.
Ahammed, F. (2017). A review of water-sensitive urban design technologies and practices for
sustainable stormwater management. Sustain. Water Resources Management, 3, 269–282.
https://doi.org/10.1007/s40899-017-0093-8
Ashraf, S., Nazemi, A. & Aghakouchak, A. (2021). Anthropogenic drought dominates groundwater
depletion in Iran. www.nature.com/scientificreports, 1–10. https://doi.org/10.1038/s41598-021-88522-
Amin Nayeri, B., Zali, N., & Motavaf, S. H. (2019). Identification of regional development drivers by scenario Planning.
International Journal of Urban Management and Energy Sustainability,
1(2), 67-80
Butler, D. & Davies, J.W., (2011). Urban Drainage, third ed. Spon Press, London.
Beecham, S. (2003). Water sensitive urban design: a technological assessment. Waterfall, Journal of the
Stormwater Industry Association, 17, 5–13.
Beecham, S. (2010). WSUD 1: water sensitive urban design, Adelaide: Water of a City, eds Daniels, C.
& Hudson, J., Barbara Hardy Centre for Sustainable Urban Environments, University of South
Australia, Adelaide, 451–465.
Beecham, S. & Chowdhury, R. K. (2010). Temporal characteristics and variability of point rainfall: a
statistical and wavelet analysis. International Journal of Climatology, 30(3), 458–473.
Beecham, S. Pezzaniti, D. & Kandasamy, J. (2012). Stormwater treatments using permeable pavements.
Water Management, 165(3), 161–170.
Beecham, S. Pezzaniti, D., Myers, B., Shackel, B. & Pearson, A. (2009). Experience in the application
of permeable interlocking concrete paving in Australia. Proceedings of the 9th International
Conference on Concrete Block Paving, Argentina, 1–8.
Brown, C., Chu, A., Duin, B. V. & Valeo, C. (2009b). Characteristics of sediment removal in two types
of permeable pavements. Water Quality Research Journal of Canada, 44(1), 59–70.
de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. (2019).
Environmental flow limits to global groundwater pumping. Nature, 574, 90–94.
Edalat, A., Khodaparast, M. & Rajabi, A. M. (2020). Detecting land subsidence due to groundwater
withdrawal in Aliabad Plain, Iran, using ESA sentinel-1 satellite data. Natural Resources Research,
29, 1935–1950.
Emami-Skardi, M. J., Kerachian, R. & Abdolhay, A. (2020). Water and Treated Wastewater Allocation
in Urban Areas Considering Social Attachments. Journal of Hydrology, 124757.
https://doi.org/10.1016/j.jhydrol.2020.124757
Emami-Skardi, M.J. (2020). Water & Reclaimed Wastewater Allocation in Urban Areas with Emphasis
on Correlated Equilibrium and Social Optimality. PhD dissertation. (In Persian). University of Tehran,
Tehran, Iran.
Emami-Skardi, M.J., Momenzadeh, N. & Kerachian, R. (2021). Social Learning Diffusion and
Influential Stakeholders Identification in Socio-Hydrological Environments. Journal of Hydrology. In
press. https://doi.org/10.1016/j.jhydrol.2021.126337
Eyni, A., Emami-Skardi, M.J. & Kerachian, R. (2021). A regret-based behavioral model for shared water
resources management: Application of the correlated equilibrium concept. Science of the Total
Environment, 759, 143892. https://doi.org/10.1016/j.scitotenv.2020.143892
Freni, G., Mannina, G. & Viviani, G. (2010). Urban storm-water quality management: centralized
versus source control. Journal of Water Resources Planning and Management, 136(2), 268–278.
Haghshenas Haghighi, M. & Motagh, M. (2019). Ground surface response to continuous compaction of
aquifer system in Tehran, Iran: results from a long-term multi-sensor InSAR analysis. Remote Sensing
of Environment, 221, 534–550.
Her, Y., Jeong, J., Arnold, J., Gosselink, L. & Glick, R. (2017). Environmental Modelling & Software A
new framework for modeling decentralized low impact developments using Soil and Water
Assessment Tool. Environmental Modelling and Software, 96, 305–322.
https://doi.org/10.1016/j.envsoft.2017.06.005
Hsieh, P. C. & Chen, Y. C. (2012). Surface water flow over a pervious pavement. International Journal
for Numerical and Analytical Methods in Geo-mechanics, 37(9):1095–1105.
Mahmoudpour, M. Khamehchiyan, M. Nikudel, M. R. & Ghassemi, M. R. (2013). Characterization of
regional land subsidence induced by groundwater withdrawals in Tehran, Iran. Jornal of Geopersia,
3(2), 49–62.
Motagh, M. et al. (2008). Land subsidence in Iran caused by widespread water reservoir
overexploitation. Geo-physical Research Letters, 35: L16403. DOI:10.1029/2008GL033814.
Prasad, Y. S. & Rao, B. V. (2018). Groundwater depletion and groundwater balance studies of
Kandivalasa River Sub Basin, Vizianagaram District, Andhra Pradesh, India. Groundwater
Sustainable Development, 6, 71–78.
Ranieri, V., Antonacci, M. C., Ying, G. & Sansalone, J. J. (2010). Application of Kozeny- Kovacs
model to predict the hydraulic conductivity of permeable pavements. Journal of the Transportation
Research Board, 21(95), 168–176.
Suter, J. F., Rouhi Rad, M., Manning, D. T., Goemans, C. & Sanderson, M. R. (2021). Depletion,
climate, and the incremental value of groundwater. Resources and Energy Economics, 63, 101- 143.
https://doi.org/10.1016/j.reseneeco.2019.101143.
Wang, M., Sweetapple, C., Fu, G., Farmani, R. & Butler, D. (2017). A framework to support decision
making in the selection of sustainable drainage system design alternatives. Journal of Environmental
Management, 201, 145–152. https://doi.org/10.1016/j.jenvman.2017.06.034
Yazdi, S. K. & Scholz, M. (2008). Combined bio-filtration, water detention and infiltration system
treating road runoff. Proceedings of the 10th British Hydrological Symposium, Exeter, 353–358.