توسعه شهری و افت تراز آب در آبخوان‌ها؛ رویکرد طراحی شهری حساس به آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری شهرسازی، دانشگاه علم و صنعت تهران ایران

2 استاد دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران

3 استاد دانشکده معماری و شهرسازی دانشگاه علم و صنعت

چکیده

بیان مسئله: آب به‌عنوان پرحجم‌ترین کالای ورودی به شهرها و چرخه آبی به‌عنوان بخشی از طبیعت واقع در جغرافیای شهری، بیشترین تأثیر را از توسعه شهری در بین دیگر منابع طبیعی دریافت کردند. با توجه به رشد و توسعه شهرها و افزایش نیاز آبی متناسب با آن، افت کمی و کیفی منابع آبی شدت بیشتری گرفته است. از نتایج توسعه شهری غیرقابل نفوذ نمودن سطوح در مناطق شهری همزمان با برداشت بی‌رویه از آب زیرزمینی بخصوص در مناطق خشک و نیمه‌خشک است. این مساله منجر به مشکلاتی همانند فرونشست زمین شده است.
هدف: نظر به مشکلات عدیده مرتبط با مشکلات آب زیرزمینی در کشورهای خشک و نیمه‌خشک و اهمیت حفظ و کنترل این منابع حیاتی، هدف از این پژوهش استفاده از رویکرد مبتنی بر طراحی شهری حساس به آب برای کنترل افت تراز آبخوان در محدوده‌های شهری است.
روش: با استفاده از یک شبیه‌سازی فیزیکی-رفتاری در یک محیط شهری از ابزارهای مبتنی بر طراحی شهری حساس به آب همانند آسفالت نفوذپذیر، تالاب مصنوعی و سدهای لاستیکی برای تغذیه آبخوان در یک محدوده شهری و افزایش نفوذپذیری زمین استفاده خواهد شد. وضعیت کمی آبخوان کن در غرب تهران به‌عنوان مطالعه موردی مطالعه شده است.
یافته‌ها: توسعه فعلی شهر تهران و افت تراز آبخوان با شرایط فعلی مشکلات جدی را برای آبخوان ایجاد خواهد کرد. با توجه به برداشت‌های آب برای کاربری‌های متنوع در محدوده مطالعاتی غرب تهران و نفوذناپذیر شدن اراضی شهری، استفاده از ابزار طراحی شهری حساس به آب می‌تواند برای کنترل افت آبخوان در محدوده مطالعاتی مؤثر باشد.
نتیجه‌گیری: روش ارائه‌شده از منظر طراحی شهری حساس به آب در کنترل افت تراز آب زیرزمینی مؤثر است ولیکن با توجه به مصارف آبی در این محدوده و شرایط مرتبط با فرونشست زمین به دلیل افت تراز آبخوان، استفاده از رویکردهای غیرسازه‌ای در کنار رویکردهای سازه‌ای ضروری است.

کلیدواژه‌ها


عنوان مقاله [English]

Urban development and groundwater depletion; water-sensitive urban design approach

نویسندگان [English]

  • Hoda Sharifian 1
  • Mostafa Behzadfar 2
  • Mohsen Faizi 3
1 Urban Planning Ph.D. candidate at Iran University of Science and Technology
2 Professor of Urban Design, School of Architecture and Environmental Design,Iran University of Science and Technology, Tehran, Iran
3 Professor, Department of Urban Planning, Faculty of Architecture and Urban Planning, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Background: Water is the largest resource entering the cities, and the water cycle as the central part of nature located in urban geography received the most impact from urbanization among other natural resources. Due to the growth and development of cities and the corresponding increase in water demand, besides Impenetrability of urban area, the quantitative and qualitative degradation of water resources has intensified. One of the most important problems caused by water shortage in urban areas, especially groundwater depletion, has caused problems such as land subsidence. Therefore, it is necessary to use an approach commensurate with urban development to deal with declining aquifers.
Objectives: Given the many problems associated with groundwater problems in arid and semi-arid countries and the importance of conserving these vital resources, the purpose of this study is to use an approach based on water-sensitive urban design to control aquifer declines in urban areas. In this research, an attempt has been made to use the water-sensitive urban design approach to reduce the effects of urban development and related problems, such as reducing the permeability of the land surface.
Method: Using a physical-behavioral simulation in an urban environment, tools based on water-sensitive urban design, such as permeable asphalt, wetlands, and rubber dams, will recharge the aquifer in an urban area and increase land permeability. The quantitative status of the aquifer in the west of Tehran has been studied as a case study.
Result: The current development of Tehran and the decline of the aquifer level with the current rate will create serious issues for the aquifer. Due to water extraction for various uses in the western part of Tehran and the impermeability of urban lands, the application of water-sensitive urban design tools can be effective to control aquifer decline in the study area.
Conclusion: The proposed method is effective in controlling groundwater depletion from the perspective of water-sensitive urban design, but due to the current water consumption in this area and conditions related to land subsidence, it is necessary to use non-structural approaches along with structural approaches.

کلیدواژه‌ها [English]

  • Water-sensitive urban design
  • Aquifer drop
  • Land subsidence
  • Physical-behavioral simulation
Abdolhay, A. (2018). Developing a conflict resolution model for water allocation in urban areas
considering the concept of reinforcement learning. M.Sc. Thesis (In Persian). University of Tehran,
Tehran, Iran.
Ahammed, F. (2017). A review of water-sensitive urban design technologies and practices for
sustainable stormwater management. Sustain. Water Resources Management, 3, 269–282.
https://doi.org/10.1007/s40899-017-0093-8
Ashraf, S., Nazemi, A. & Aghakouchak, A. (2021). Anthropogenic drought dominates groundwater
depletion in Iran. www.nature.com/scientificreports, 1–10. https://doi.org/10.1038/s41598-021-88522-
Amin Nayeri, B., Zali, N., & Motavaf, S. H. (2019). Identification of regional development drivers by scenario Planning. International Journal of Urban Management and Energy Sustainability1(2), 67-80
Butler, D. & Davies, J.W., (2011). Urban Drainage, third ed. Spon Press, London.
Beecham, S. (2003). Water sensitive urban design: a technological assessment. Waterfall, Journal of the
Stormwater Industry Association, 17, 5–13.
Beecham, S. (2010). WSUD 1: water sensitive urban design, Adelaide: Water of a City, eds Daniels, C.
& Hudson, J., Barbara Hardy Centre for Sustainable Urban Environments, University of South
Australia, Adelaide, 451–465.
Beecham, S. & Chowdhury, R. K. (2010). Temporal characteristics and variability of point rainfall: a
statistical and wavelet analysis. International Journal of Climatology, 30(3), 458–473.
Beecham, S. Pezzaniti, D. & Kandasamy, J. (2012). Stormwater treatments using permeable pavements.
Water Management, 165(3), 161–170.
Beecham, S. Pezzaniti, D., Myers, B., Shackel, B. & Pearson, A. (2009). Experience in the application
of permeable interlocking concrete paving in Australia. Proceedings of the 9th International
Conference on Concrete Block Paving, Argentina, 1–8.
Brown, C., Chu, A., Duin, B. V. & Valeo, C. (2009b). Characteristics of sediment removal in two types
of permeable pavements. Water Quality Research Journal of Canada, 44(1), 59–70.
de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. (2019).
Environmental flow limits to global groundwater pumping. Nature, 574, 90–94.
Edalat, A., Khodaparast, M. & Rajabi, A. M. (2020). Detecting land subsidence due to groundwater
withdrawal in Aliabad Plain, Iran, using ESA sentinel-1 satellite data. Natural Resources Research,
29, 1935–1950.
Emami-Skardi, M. J., Kerachian, R. & Abdolhay, A. (2020). Water and Treated Wastewater Allocation
in Urban Areas Considering Social Attachments. Journal of Hydrology, 124757.
https://doi.org/10.1016/j.jhydrol.2020.124757 
Emami-Skardi, M.J. (2020). Water & Reclaimed Wastewater Allocation in Urban Areas with Emphasis
on Correlated Equilibrium and Social Optimality. PhD dissertation. (In Persian). University of Tehran,
Tehran, Iran.
Emami-Skardi, M.J., Momenzadeh, N. & Kerachian, R. (2021). Social Learning Diffusion and
Influential Stakeholders Identification in Socio-Hydrological Environments. Journal of Hydrology. In
press. https://doi.org/10.1016/j.jhydrol.2021.126337
Eyni, A., Emami-Skardi, M.J. & Kerachian, R. (2021). A regret-based behavioral model for shared water
resources management: Application of the correlated equilibrium concept. Science of the Total
Environment, 759, 143892. https://doi.org/10.1016/j.scitotenv.2020.143892
Freni, G., Mannina, G. & Viviani, G. (2010). Urban storm-water quality management: centralized
versus source control. Journal of Water Resources Planning and Management, 136(2), 268–278.
Haghshenas Haghighi, M. & Motagh, M. (2019). Ground surface response to continuous compaction of
aquifer system in Tehran, Iran: results from a long-term multi-sensor InSAR analysis. Remote Sensing
of Environment, 221, 534–550.
Her, Y., Jeong, J., Arnold, J., Gosselink, L. & Glick, R. (2017). Environmental Modelling & Software A
new framework for modeling decentralized low impact developments using Soil and Water
Assessment Tool. Environmental Modelling and Software, 96, 305–322.
https://doi.org/10.1016/j.envsoft.2017.06.005
Hsieh, P. C. & Chen, Y. C. (2012). Surface water flow over a pervious pavement. International Journal
for Numerical and Analytical Methods in Geo-mechanics, 37(9):1095–1105.
Mahmoudpour, M. Khamehchiyan, M. Nikudel, M. R. & Ghassemi, M. R. (2013). Characterization of
regional land subsidence induced by groundwater withdrawals in Tehran, Iran. Jornal of Geopersia,
3(2), 49–62.
Motagh, M. et al. (2008). Land subsidence in Iran caused by widespread water reservoir
overexploitation. Geo-physical Research Letters, 35: L16403. DOI:10.1029/2008GL033814.
Prasad, Y. S. & Rao, B. V. (2018). Groundwater depletion and groundwater balance studies of
Kandivalasa River Sub Basin, Vizianagaram District, Andhra Pradesh, India. Groundwater
Sustainable Development, 6, 71–78.
Ranieri, V., Antonacci, M. C., Ying, G. & Sansalone, J. J. (2010). Application of Kozeny- Kovacs
model to predict the hydraulic conductivity of permeable pavements. Journal of the Transportation
Research Board, 21(95), 168–176.
Suter, J. F., Rouhi Rad, M., Manning, D. T., Goemans, C. & Sanderson, M. R. (2021). Depletion,
climate, and the incremental value of groundwater. Resources and Energy Economics, 63, 101- 143.
https://doi.org/10.1016/j.reseneeco.2019.101143.
Wang, M., Sweetapple, C., Fu, G., Farmani, R. & Butler, D. (2017). A framework to support decision
making in the selection of sustainable drainage system design alternatives. Journal of Environmental
Management, 201, 145–152. https://doi.org/10.1016/j.jenvman.2017.06.034
Yazdi, S. K. & Scholz, M. (2008). Combined bio-filtration, water detention and infiltration system
treating road runoff. Proceedings of the 10th British Hydrological Symposium, Exeter, 353–358.