ارزیابی عملکرد تهویه طبیعی با استفاده از مدل‌سازی فرم‌های شهری در بافت قدیم کلان‌شهر شیراز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه معماری، دانشکده معماری و هنر، دانشگاه گیلان، رشت، ایران

2 دانش‌آموخته کارشناسی ارشد شهرسازی، موسسه آموزش عالی آپادانا، شیراز، ایران

3 کاندیدای دکتری شهرسازی، دانشکده هنر و معماری، دانشگاه شیراز، شیراز، ایران

4 دانشیار بخش معماری، دانشکده هنر و معماری، دانشگاه شیراز، شیراز، ایران

5 استادیار بخش معماری، دانشکده هنر و معماری، دانشگاه شیراز، شیراز، ایران

10.22124/upk.2025.28792.1980

چکیده

بیان مسئله: با توسعه شهرها در عصر حاضر، مشکلات و پدیده‌هایی مانند جزایر گرمایی شهری، کاهش کیفیت هوا در بافت شهرها و عدم آسایش حرارتی در فضاهای عمومی شهرها چالش‌های عمیقی برای زیست شهروندان به‌وجود آورده‌اند. از طرف دیگر، در مطالعات معماری و شهری، کمتر مطالعه‌ای به ویژگی‌های فرم و شکل شهرها به‌منظور افزایش تهویه طبیعی در خیابان‌ها به‌عنوان فضاهای عمومی پرتردد در شهرها پرداخته است.
هدف: این مطالعه با در نظر گرفتن تراکم و ارتفاع ساختمان‌ها در جداره یک خیابان شهری در بافت میانی کلان‌شهر شیراز، به ارزیابی مدل‌های ممکن در جهت افزایش تهویه طبیعی و درنتیجه کاهش گرمای محیط شهری و خروج بهتر آلاینده‌ها می‌پردازد.
روش: روش انجام تحقیق از نوع کمی و از ابزار شبیه‌سازی محاسبات دینامیک سیالات برای مدل‌سازی جریان باد در محیط شهری استفاده‌شده است. بر این اساس نرم‌افزار FloEFD پس از اعتبارسنجی در این مطالعه قرار گرفت و پس از مدل‌سازی در محیط داخلی نرم‌افزار سه مؤلفه دما، فشار، سرعت جریان هوا و الگوی حرکتی جریان هوا بین مدل‌های ایجادشده موردبررسی قرار گرفت.
یافته‌ها: یافته‌های مطالعه نشان می‌دهد مدل دوم که با افزایش تدریجی تعداد طبقات از جداره خیابان به سمت بافت در نظر گرفته‌شده است، توزیع هوا و سرعت مناسب جریان هوای مناسب‌تری نسبت به دیگر مدل‌های بررسی‌شده، داشته است. بر اساس نتایج عددی، سرعت جریان در این مدل تا 2/2 متر بر ثانیه افزایش داشته است.
نتیجه‌گیری: در ارتباط با الگوی جریان هوا در مدل بهینه، جریان با شدت سرعت بیشتر و در تمامی نقاط بافت و خیابان موردمطالعه پراکنده‌شده است که این امر منجر می‌تواند به خروج بهتر گرما و آلاینده‌ها از محیط خیابان منجر شود. مدل دوم یعنی افزایش تدریجی ارتفاع ساختمان‌ها از لبه خیابان به سمت بافت بهترین سرعت جریان هوا به‌منظور تهویه طبیعی در خیابان فراهم می‌کند. همچنین الگوی حرکتی جریان در مدل دوم نسبت به دو مدل دیگر بهتر می‌تواند در توزیع جریان در نقاط مختلف خیابان عمل کند به‌طوری‌که توزیع دما و فشار متوازن در نقاط مختلف منجر به افزایش کارایی تهویه در محیط خیابان گردیده است.

تازه های تحقیق

تهویه طبیعی به عنوان یک راهکار طراحی غیرفعال در کاهش آلاینده ها در کریدورهای شهری نقش موثری دارد. براساس یافته‌های تحقیق، شیب تدریجی ارتفاع ساختمان‌ها از جداره به سمت بافت دربرگیرنده خیابان در افزایش کارایی تهویه طبیعی در خروج آلاینده‌ها تاثیر بسزایی دارد.

توزیع فشار هوای مناسب در کریدورهای شهری و سرعت جریان هوا بین 2/1 تا 5/1 متر برثانیه به توزیع نرمال جریان هوا کمک می کند که در نهایت منجر به خروج آلاینده‌ها از سطوح مختلف خیابان می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Natural Ventilation Performance Using Modeling of Urban Forms in the Old Context of Shiraz Metropolis

نویسندگان [English]

  • Ardalan Aflaki 1
  • Saghar Hasani 2
  • Seyedeh Aida Hoseini 3
  • Amin Habibi 4
  • Mohammad Nikkar 5
1 Assistant Professor, Department of Architecture, University of Guilan, Rasht. Iran
2 Master of Urban Planning, Apadana Institute of Higher Education, Shiraz, Iran
3 PhD Candidate in Urban Planning, Faculty of Art and Architecture, Shiraz University, Shiraz, Iran
4 . Associate Professor, Department of Architecture, Shiraz University, Shiraz, Iran
5 Assistant Professor, Department of Architecture, Shiraz University, Shiraz, Iran
چکیده [English]

Introduction: The rapid urbanization since the Industrial Revolution has significantly altered cities, replacing natural surfaces with buildings, which impacts near-ground meteorological conditions like temperature, wind, and humidity. This leads to pollution, urban heat islands, and higher energy demands. Urban ventilation, influenced by factors like urban design, can help mitigate these effects.
Studies on urban ventilation focus on macro, meso, and micro scales, with micro-scale studies using CFD simulations and wind tunnel experiments to optimize airflow. In Shiraz, rapid development, destruction of greenery, and heavy traffic have made it the eighth most polluted city in Iran. This study examines the historical fabric of District 8 in Shiraz, focusing on building arrangement and its effect on airflow and pollution. The goal is to use CFD simulations and data to improve natural ventilation and address pollution, enhancing Shiraz’s environment and quality of life in the face of climate change and urban growth.
Methodology: The historical fabric of Shiraz, covering an area of 395.90 hectares, houses a population of around 92,173 people, with a density of 199 people per hectare. It is located between Karim Khan Zand and Lotfali Khan Zand streets. According to cultural heritage regulations, building heights in this area should range from one to two stories; however, along the periphery of the fabric, particularly the ring surrounding it (between Qa'ani, Timuri, Saadi, and Tawhid streets), there are three- to four-story buildings, and even taller structures. In main streets such as Karim Khan Zand, Lotfali Khan Zand, and Ahmadi, there is also a trend towards taller buildings.
For this research, an area of District 8 along Lotfali Khan Zand Street was selected due to its minimal changes and preservation of the original form and structure of buildings. However, within the old fabric, newly constructed buildings with varying heights have altered the original arrangement. This study uses a quantitative approach and simulation with the FloEFD software to assess airflow within the studied fabric. After library research and reviewing the existing site conditions, the initial model was created using the software . To evaluate the impact of research components on airflow and pollutant reduction on Lotfali Khan Zand Street, two additional models were created. In the first model, building heights increase from the street edge into the fabric, while in the second model, the height decreases as it approaches the street. The 
software uses the Navier-Stokes equations and the k-ε model to calculate wind direction and intensity, with advanced meshing techniques to improve computational accuracy. For simplification and to fit within system limitations, details like green spaces and intricate building features were excluded from the modeling.
The models in FloEFD were designed using SolidWorks, integrated within the software. These models were based on existing maps and field data from buildings on Lotfali Khan Zand Street and the layers behind them. Irregularities in building heights cause air to be trapped in the fabric, hindering proper air exchange and ventilation. For fluid calculations, the computational domain was considered as a rectangular box around the model. Additionally, environmental data such as temperature, wind speed, and air pressure were input based on average meteorological data.
This study evaluates three components: building heights (A), street widths (B), and urban block arrangements (C), by altering these parameters in the simulation software and analyzing their impacts on airflow, permeability, pressure, and temperature. Three different models were examined:

Model 1: The existing situation with buildings scattered at irregular heights ranging from one to three stories.
Model 2: Units with lower density and fewer stories (one to two stories) at the street edge, with taller buildings (three to six stories) behind them.
Model 3: Taller buildings (three to six stories) at the street edge, with shorter units (one to two stories) behind them.

In the simulation, parameters such as primary and secondary wind speeds, static and dynamic pressures, and the temperature of the incoming airflow were chosen as the objectives for analysis. All models were pre-meshed with advanced techniques before simulation.
Results: Simulation model analysis: The simulation findings were reviewed using horizontal (Cut Plot), vertical (Surface Plot), and airflow trajectory (Flow Trajectories) distributions. The three models studied were:

Existing fabric model: Irregular building dispersion.
Lower floors at the street edge and higher floors behind: Relatively improved ventilation.
Higher floors at the street edge and lower floors behind: The most effective model for proper airflow.

Conclusion: In the studied area, creating diverse block arrangements and considering various building heights can enhance urban ventilation. The arrangement of buildings—lower heights near the street edge and taller ones behind—can improve wind flow, optimize natural ventilation, and significantly reduce pollutant levels. These findings offer valuable insights for urban planning, especially for areas in Shiraz, to help mitigate pollution and enhance the quality of life for residents.

کلیدواژه‌ها [English]

  • Urban form
  • natural ventilation
  • air flow pattern
  • air quality
  • urban street
 
Aguirre, R. T., & Bolton, K. W. (2014). Qualitative interpretive meta-synthesis in social work research: Uncharted territory. Journal of Social Work, 14(3), 279-294. DOI: 10.1177/1468017313476797
Akbari, H. (2017). A Study and Analysis about Quality of Urban Life Based on Healthy Housing an Indexes (Case study: Daran city Isfehan). Master's thesis, College of Humanities Social, Yazd University, Yazd, Iran. (In Persian)
Alkhalili, N., Kesik, T., O’Brien, W., & Peters, T. (2018). Developing and testing visual privacy metrics. At the 7th International Building Physics Conference (IBPC 2018). Syracuse, NY, USA. DOI: 10.14305/ibpc.2018.hf-4.02
Amerio, A., Brambilla, A., Morganti, A., Aguglia, A., Bianchi, D., Santi, F., Costantini, L., Odone, A., Costanza, A., Signorelli, C., Serafini, G., Amore, M.,    &    Capolongo, S.    (2020).    COVID-19 Lockdown: Housing Built Environment’s Effects on   Mental   Health. International   Journal   of Environmental   Research   and   Public   Health, 17(16), 5973. DOI: 10.3390/ijerph17165973
Ashton, J., Grey, P., & Barnard, K. (1986). Healthy cities—WHO's new public health initiative. Health promotion international, 1(3), 319-324.‏ DOI: 10.1093/heapro/1.3.319
Awada, M., Becerik-Gerber, B., Hoque, S., O'Neill, Z., Pedrielli, G., Wen, J., & Wu, T. (2021). Ten questions concerning occupant health in buildings during normal operations and extreme events including the COVID-19 pandemic. Building and Environment, 188, 107480.‏ DOI: 10.1016/j.buildenv.2020.107480
Awofeso, N. (2003). The Healthy Cities approach: Reflections on a framework for improving global health. Bulletin of the World Health Organization, 81, 222-223.‏ URL: https://iris.who.int/handle/10665/268896
Barton, H., & Grant, M. (2006). A health map for the local human habitat. Journal of the Royal Society for Promotion of Health, 126(6), 252-253. DOI: 10.1177/1466424006070466
Barton, H., Grant, M., Mitcham, C., & Tsourou, C. (2009). Healthy urban planning in European cities. Health promotion international, 24(suppl_1), i91-i99.‏ DOI: 10.1093/heapro/dap059
Bazi, Kh, R., & Javaher, A. (2012). ‏Spatial differences of healthy housing indicators in Zabol neighborhoods. Geography and Environmental Planning, 22(3), 185 – 202. (In Persian). DOR: 20.1001.1.20085362.1390.22.3.12.7
Bonnefoy, X. (2007). Inadequate housing and health: an overview. International journal of environment and pollution30(3-4), 411-429. DOI:‏ 10.1504/IJEP.2007.014819
‏Campion, J., Javed, A., Sartorius, N., & Marmot, M. (2020). Addressing the public mental health challenge of COVID-19. The Lancet. Psychiatry, 7(8), 657–659. DOI: 10.1016/S2215-0366(20)30240-6
Carlucci, S., Causone, F., De Rosa, F., & Pagliano, L. (2015). A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renewable and Sustainable Energy Reviews, 47, 1016–1033. DOI: 10.1016/j.rser.2015.03.062
Chadwick, E. (1842). Report to Her Majesty’s Principal Secretary of State for the Home Department from the Poor Law Commissioners, on an Inquiry into the sanitary condition of the labouring population of Great Britain: With appendices. HMSO. DOI: https://wellcomecollection.org/works/vgy8svyj
Chan, E. H., Lam, K., & Wong, W. (2008). Evaluation on indoor environment quality of dense urban residential buildings. Journal of Facilities Management, 6(4), 245–265. DOI: 10.1108/14725960810908127
De Leeuw, E. (2003). Nurturing Healthy Cities. Healthy cities and urban policy research138.‏
Dooris, M. (2009). Holistic and sustainable health improvement: the contribution of the settings-based approach to health promotion. Perspectives in public health129(1), 29-36.‏ DOI: 10.1177/1757913908098881
Duhl, L. J., & Hancock, T. (1988). Promoting health in the urban context (No. 1). WHO Healthy Cities Project Office.
Esmaeilzadeh H, Koozagar L A, Alian M, Adinehvand A A. (2016). Meta-analysis on urban governance researches in Iran. MJSP, 20 (2), 1-40. (In Persian). URL: http://hsmsp.modares.ac.ir/article-21-5100-en.html
Evans, G. W., Wells, N. M., & Moch, A. (2003). Housing and mental health: a review of the evidence and a methodological and conceptual critique. Journal of social issues59(3), 475-500.‏ DOI: 10.1111/1540-4560.00074
Gasemzadeh, F. (2018). Assessing the city of Islamshahr using healthy housing indices. Master’s thesis, Shahid Beheshti University, Faculty of Earth Sciences, Department of Geography, Tehran, Iran. (In Persian).
Ghasemi Darvish Baghal, R., Ghorbani Kootenaei, A., & Rezaei, H. (2016). A brief overview of the history of the emergence of the healthy city concept. Association of Science and Technology of Modern Horizons & Central Database of Sciences Generation, Eslamshahr. (In Persian). Retrieved from https://civilica.com/doc/567758
Ghimire, J., Carswell, A. T., Ghimire, R., & Turner, P. R. (2021). The impact of US housing type and residential living situations on mental health during COVID-19. International Journal of environmental research and public health18(16), 8281.‏ DOI: 10.3390/ijerph18168281
Giarma, C., Tsikaloudaki, K., & Aravantinos, D. (2017). Daylighting and visual comfort in buildings’ environmental performance assessment tools: A critical review. Procedia Environmental Sciences, 38, 522–529. DOI: 10.1016/j.proenv.2017.03.116
Goldstein, G., Rossi-Espagnet, A., & Tabibzadeh, I. (2014). How the World Health Organization supports urban health development. In Urban Health in Developing Countries (pp. 110-122). Routledge.‏ DOI: 10.4324/9781315070698
Graham, R. (1818). Practical observations on continued fever, especially that form existing at present as an epidemic.‏ URL: URL: https://wellcomelibrary.org/item/b30795849.
Greco, T., Zangrillo, A., Biondi-Zoccai, G., & Landoni, G. (2013). Meta-analysis: pitfalls and hints. Heart, lung and vessels5(4), 219.‏ URL: https://pubmed.ncbi.nlm.nih.gov/24364016
Gualano, M. R., Lo Moro, G., Voglino, G., Bert, F., & Siliquini, R. (2020). Effects of Covid-19 lockdown on mental health and sleep disturbances in Italy. International Journal of Environmental Research and Public Health, 17(13), 4779. DOI: 10.3390/ijerph17134779
Guo, X., Fan, Z., Zhu, H., Chen, X., Wang, M., & Fu, H. (2022). Willingness to pay for healthy housing during the COVID-19 pandemic in China: Evidence from eye-tracking experiment. Frontiers in Public Health10, 855671.‏ DOI: 10.3389/fpubh.2022.855671
Hassani, A., Omaleki, V., Erikat, J., Frost, E., Streuli, S., Sahid, R., ... & Fielding-Miller, R. (2023). Overcrowded housing reduces COVID-19 mitigation measures and lowers emotional health among San Diego refugees from September to November of 2020. Plos one18(6), e0286993.‏ DOI: 10.1371/journal.pone.0286993
Hasselaar, E. (2006). Health performance of housing: indicators and tools (Vol. 10). IOS Press.‏
Hateminejad, H., Azari, I., & Attaran Sani, F. (2021). Analysis of healthy housing indicators in Mashhad city. Shabak, 7(2), 133-150. SID. (In Persian). URL: https://sid.ir/paper/967392/fa
Hood, E. (2005). Dwelling disparities: How poor housing leads to poor health. DOI: 10.1289/ehp.113-a310
Ibrahim, S. (2022). The effects of COVID-19 on the water sector. Frontiers in Environmental Science10, 968703.‏ DOI: 10.3389/fenvs.2022.968703
Iddi, S., Muindi, K., Gitau, H., & Mberu, B. (2022). Characterization of healthy housing in Africa: Method, profiles, and determinants. Journal of Urban Health99(1), 146-163.‏ DOI: 10.1007/s11524-021-00603-5
Karimi Beneh Khalkhal, H. (2016). Measuring Urban Healthy Housing (A Case Study of Ardabil). Master's thesis, Faculty of Literature and Humanities, University of Guilan, Guilan, Iran. (In Persian).
Karimi Beneh Khalkhal, H., Jafari Mehraabadi, M., & Aghaeizadeh, E. (2018). Investigating the Healthy House in the Cities (Case Study of Ardabil City). Motaleate Shahri7(26), 99-111. (In Persian). URL: https://urbstudies.uok.ac.ir/article_60806.html
Khakpoor, b., & Yaghoubi, M. (2023). Evaluation of quantitative indicators of housing in informal settlements (Sample of August: Region 5 of Mashhad Municipality). Urban & Regional Policy, 1(4), 23-43. (In Persian). DOR: 20.1001.1.28210921.1401.1.4.3.2
Levitt, H. M., Pomerville, A., & Surace, F. I. (2016). A qualitative meta-analysis examining clients’ experiences of psychotherapy: a new agenda. Psychological bulletin142(8), 801.‏ URL: https://psycnet.apa.org/doi/10.1037/bul0000057
Li, M., Tu, W., & Lu, F. (2022). Sensing the Nighttime Economy-Housing Imbalance from a Mobile Phone Data Perspective: A Case Study in Shanghai. Remote. Sens., 14, 2738. DOI: 10.3390/rs14122738
Mahdnejad, H. (2023). Theoretical model presentation Meta-analysis of urban living labs as a transition model of sustainability. Urban Plan Knowl7(3), 1-20. (In Persian) DOI: 10.22124/upk.2023.23856.1848
Malakouti, S, M. (2020). Identifying Healthy Housing indicators with a focus on women health. School of Architecture and Environmental Design. Iran University of Science and Technology, Tehran, Iran. (In Persian).
Mansour, A., Bentley, R., Baker, E., Li, A., Martino, E., Clair, A., ... & Howden-Chapman, P. (2022). Housing and health: an updated glossary. J Epidemiol Community Health.‏ DOI: 10.1136/jech-2022-219085
Mapar, M., Jafari, M. J., Mansouri, N., Arjmandi, R., Azizinezhad, R., & Ramos, T. B. (2020). A composite index for sustainability assessment of health, safety and environmental performance in municipalities of megacities. Sustainable Cities and Society, Article 102164. DOI: 10.1016/j.scs.2020.102164
Megahed, N. A., & Ghoneim, E. M. (2020). Antivirus-built environment: Lessons learned from Covid-19 pandemic. Sustainable cities and society61, 102350.‏ DOI: 10.1016/j.scs.2020.102350
Mousavinia, S. F. (2023). Effects of housing layout and perceived behavioral control over social distancing in relation between social isolation and psychological distress during pandemic of COVID-19. Journal of Housing and the Built Environment, 1-19.‏ DOI: 10.1007/s10901-023-10035-z
Oskouee Aras, A., & Azar, A. (2023). A Meta-Analysis of Researches Conducted on the Quality of Urban Life in Informal Settlements in Iran. Urban Plan Knowl7(3), 67-89. (In Persian) DOI: 10.22124/upk.2023.22756.1796
Padashi Amlashi, A., Irani Behbahani, H., khakpour, M., & Bandarabad, A. (2024). Recognizing the components of indigenous housing from livability perspective: (Case study: Amlash city). Urban Plan Knowl7(4), 96-112. DOI: 10.22124/upk.2024.19759.1648
Pourahmad, A., Garousi, A., & Noori, A. (2015). Evaluating the housing indicators in NazarAbad County (towards a healthy city approach). Physical Social Planning2(4), 21-33. (In Persian). URL: https://psp.journals.pnu.ac.ir/article_2410.html
Rafie, N., Hassan Beigi, F., Mohammadzadeh, S., & Abbaszadeh, F. (2023). A review of the whys and how’s of the healthy city. 11th International Conference on New Research in Accounting, Management and Humanities in the Third Millennium, Tehran. (In Persian). Retrieved from https://civilica.com/doc/1870355
Saatsaz, M. J. (2015). Evaluating the quality of the urban life based on healthy housing indices (case Study: Neighboursood shahrak daneshgah of yazd). Master's thesis, Departeman of Geography, Yazd University, Yazd, Iran. (In Persian).
Salama, A. M. (2023). Coronavirus questions that will not go away: interrogating urban and socio-spatial implications of COVID-19 measures. Emerald Open Research, 1(5).‏ DOI: 10.1108/EOR-05-2023-0006
Taghipour, A., Shahmiri, S. M., & Ahmadi Dehrashid, P. (2023). Evaluation of Mental Indicators of Healthy City from Citizens' Point of View (Case Study: Shahriar, Iran). Journal of Urban Sustainable Development, 4(12), 87-107. (In Persian). DOI: 10.22034/usd.2023.708118
Tao, Y. X., Zhu, Y., & Passe, U. (2020). Modeling and data infrastructure for human-centric design and operation of sustainable, healthy buildings through a case study. Building and Environment170, 106518.‏ DOI: 10.1016/j.buildenv.2019.106518
Timulak, L. (2009). Meta-analysis of qualitative studies: A tool for reviewing qualitative research findings in psychotherapy. Psychotherapy Research19(4-5), 591-600.‏ DOI: 10.1080/10503300802477989
Tsouros, A. D. (1995). The WHO Healthy Cities Project: State of the art and future plans. Health promotion international10(2), 133-141.‏ DOI: 10.1093/heapro/10.2.133
Webster, P., & Sanderson, D. (2013). Healthy cities indicators - a suitable instrument to measure health? Journal of Urban Health, 90(1), 52–61. DOI: 10.1007/s11524-011-9643-9
Werna, E., & Harpham, T. (1996). The implementation of the Healthy Cities project in developing countries: lessons from Chittagong. Habitat International20(2), 221-228.‏ DOI: 10.1016/0197-3975(95)00057-7
Werna, E., Harpham, T., Blue, I., & Goldstein, G. (1999). From healthy city projects to healthy cities. Environment and Urbanization11(1), 27-40.‏ DOI: 10.1177/095624789901100109
WHO. (1988). Promoting Health in the Urban Context, World Health Organization: Geneva, Switzerland.
WHO. (1995). Constitution of the World Health Organization.
WHO. (2019). Healthy housing: Raising standards, reducing inequalities. available on https://www.who.int/sustainable-development/Factsheet-Housing-190517.pdf
WHO. (2021). Policies, regulations and legislation promoting healthy housing: a review.‏ from World Health Organization.
WHO. (2022). Coronavirus (COVID-19) dashboard. Retrieved January 10, 2022, from World Health Organization. URL: https://covid19.who.int/
Xu, Y., & Juan, Y. K. (2021). Design strategies for multi-unit residential buildings during the post-pandemic era in China. Frontiers in Public Health9, 761614. DOI: 10.3389/fpubh.2021.761614
Xue, P., Mak, C., & Ai, Z. (2016). A structured approach to overall environmental satisfaction in high-rise residential buildings. Energy and Buildings, 116, 181–189. DOI: 10.1016/j.enbuild.2016.01.006
Yaghoobi, F. (2017). Evaluation of quantitative and qualitative indicators of housing in Ardabil city with healthy city approach. Master's thesis, Faculty of Literature and Humanities, University of Mohaghegh Ardabili, Ardabil, Iran. (In Persian)
Zarrabi, M., Yazdanfar, S. A., & Hosseini, S. B. (2021). COVID-19 and healthy home preferences: The case of apartment residents in Tehran. Journal of Building Engineering35, 102021.‏ DOI: 10.1016/j.jobe.2020.102021
Ziari, K., Qarakhlou, M., & Janbabanejad Touri, M, H. (2010). Comparative comparison of the quantitative and qualitative indices of babol city domicile problem with all cities of the country emphasizing on healthful city. Geographical Research25(97), 83-116. (In Persian). URL: https://jgr.ui.ac.ir/article_17863.html
Ziersch, A., Walsh, M., Due, C., & Duivesteyn, E. (2017). Exploring the relationship between housing and health for refugees and asylum seekers in South Australia: a qualitative study. International journal of environmental research and public health14(9), 1036.‏ DOI: 10.3390/ijerph14091036